
Digital Object Identifier (DOI) 10.1007/s10052-002-0986-y
Eur. Phys. J. C 25, 327–332 (2002) THE EUROPEAN

PHYSICAL JOURNAL C

Superstring on pp-wave orbifold
from large-N quiver gauge theory�

N. Kim1,a, A. Pankiewicz1,b, S.-J. Rey2,3,c, S. Theisen1,d

1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm, Germany
2 School of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
3 Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH, UK

Received: 14 March 2002 /
Published online: 5 July 2002 – c© Springer-Verlag / Società Italiana di Fisica 2002

Abstract. We extend the proposal of Berenstein, Maldacena and Nastase to the Type IIB superstring
propagating on a pp-wave over the R4/Zk orbifold. We show that first-quantized free string theory is
described correctly by the large-N , fixed gauge coupling limit of N = 2 [U(N)]k quiver gauge theory.
We propose a precise map between gauge theory operators and string states for both untwisted and
twisted sectors. We also compute leading-order perturbative correction to the anomalous dimensions of
these operators. The result is in agreement with the value deduced from the string energy spectrum, thus
substantiating our proposed operator-state map.

1 Introduction

Berenstein, Maldacena and Nastase (BMN) [1] have re-
cently put forward a remarkable proposal, extending the
regime of the gauge theory description from supergrav-
ity to the full-fledged closed string theory. The idea is to
utilize conserved global charges in the gauge theory and
reorganize the perturbative expansion. For example, for
N = 4 super Yang–Mills theory in four dimensions, corre-
lation functions involving operators of scaling dimension
∆ and global charge J are reorganizable in a calculable
manner in the limit:

λ2 = g2
YMN →∞, g2

eff =
λ2

J2 → finite,

(∆− J)→ finite. (1)

In this limit, the effective expansion parameter is set by
g2
eff , in sharp contrast to the ‘t Hooft large-N limit, where

the expansion parameter is set by the ‘t Hooft coupling
λ2.

In the N = 4 super Yang–Mills theory, operators with
(∆ − J) > 0 are long supermultiplets, hence correspond
to massive string oscillator modes of Type IIB string the-
ory. In the new limit (1), J ∼ N1/2 is large, of order
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1/g1/2
s

)
in the weak string coupling limit. The limit

(1) turns out to correspond in the Type IIB string theory
to the so-called Penrose limit of the AdS5×S5 background,
yielding a pp-wave spacetime with transverse R4×R4 ge-
ometry and homogeneous RR 5-form field strength [2–4].
It amounts to boosting the background around a great
circle in S5 and rescaling, so that a neighborhood around
the null geodesics is blown up. As such, the BMN limit of
N = 4 super Yang–Mills theory is interpretable as a gauge
theory description for the discrete light-cone quantization
of the Type IIB superstring. Interestingly, in the Penrose
limit of AdS5×S5, the total number of isometries as well
as spacetime supersymmetries remain the same. Rather,
the limit yields a contraction of the SU(2, 2|4) supercon-
formal algebra (see [5] for an explicit demonstration).

A central technical feature that facilitates this corre-
spondence is the phenomenon that anomalous dimensions
of a certain class of long multiplet operators are param-
eterically suppressed. The relevance of this sort of oper-
ators to the string theory has been first emphasized by
Polyakov [6]. In the proposal of BMN, these operators
play a prominent role in that they describe the creation
and annihilation operators of string oscillation modes.

An immediate question is whether the proposal is ap-
plicable to a more nontrivial background of the pp-wave
front. In this paper, we extend the BMN proposal to the
simplest yet nontrivial situation: pp-wave orbifold – the
homogeneous pp-wave background (part of) whose trans-
verse space is orbifolded. Specifically, we will consider orb-
ifolding one of the two R4 subspaces transverse to the
propagation null vector. Our motivation comes from vari-
ous corners. First, the plane-wave background considered
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by BMN preserves all 32 spacetime supersymmetries. It is
clearly of interest to investigate if the BMN proposal is ex-
tendible to plane-wave backgrounds with a smaller num-
ber of spacetime supersymmetries. The simplest way to
reduce the supersymmetry is to orbifold part of the trans-
verse space. Second, as shown in [1,7,8], the plane-wave
background acts as a harmonic potential to the string, and
hence the dynamical distinction between untwisted and
twisted states is less clear. It is thus of intrinsic interest to
see if one can find a precise map between Type IIB string
oscillation modes and quiver gauge theory operators, both
for untwisted and twisted sectors.

This paper is organized as follows. In Sect. 2, we study
the discrete light-cone quantization of the Type IIB su-
perstring on a pp-wave orbifold, and obtain the energy
spectrum. In Sect. 3, we analyze gauge invariant opera-
tors in the dual, N = 2 quiver gauge theory, and find
the precise correspondence with the spectrum obtained in
Sect. 2. In Sect. 4, we compute perturbatively the anoma-
lous dimension of (∆− J) = 1 operators at leading order
and find agreement with the light-cone energy spectrum
of Sect. 2.

Shortly after [1], several preprints with various gener-
alizations have appeared [9–11]. In particular, [12], which
has substantial overlap with part of our work, was posted
on the archive while we were in the process of writing
down our results.

2 Type IIB superstring on pp-wave orbifold

Let us begin with the dynamics of a Type IIB superstring
on a pp-wave background. The background, supported by
a homogeneous RR 5-form and dilaton fields, is given by

ds2 = −4dx+dx− − µ2(�x2 + �y2)(dx+)2

+d�x2 + d�y2, (2)
F+1234 = F+5678 = µ, (3)

eφ ≡ gs = constant, (4)

where (�x, �y) ∈ R4 × R4, and is known to be maximally
supersymmetric, preserving all 32 spacetime supersym-
metries. It was argued that, in the background (2)–(4),
the Type IIB superstring is exactly solvable [7,8], owing
mainly to the fact that the light-cone worldsheet dynamics
is described by free fields, albeit being massive.

Recently, it was found that the pp-wave background
(2)–(4) is related to the other known maximally super-
symmetric background – AdS5 × S5 with RR 5-form flux
threaded on the five-sphere – via the Penrose limit along a
large circle of the S5 [3]. Note that the isometry group of
the eight-dimensional space transverse to the null propa-
gation direction is SO(4)×SO(4): while the spacetime ge-
ometry is invariant under SO(8), the 5-form field strength
breaks it to SO(4)×SO(4). In the Green–Schwarz action
of the Type IIB string in the plane-wave background, the
reduction of the isometry is due to the coupling of spinor
fields to the background RR 5-form field strength.

One is interested in reducing the number of supersym-
metries preserved by the background. As alluded to in the

introduction, one can reduce the 32 supersymmetries to 16
supersymmetries by taking a Zk orbifold of the R4 sub-
space parameterized by �y. The orbifold action is defined
by

g : (z1, z2) −→ (ωz1, ωz2) where ω = e2πi/k. (5)

Here, z1 ≡ (1/21/2)(y6 + iy7), z2 ≡ (1/21/2)(y8 − iy9).
The orbifold action g acts on the spacetime fields as g =
exp ((2πi/k)(J67 − J89)), J67 and J89 being the rotation
generators in the 67 and 89 planes, respectively. Thus de-
fined, the orbifold of the pp-wave background is actually
derivable from the Penrose limit of AdS5 × S5/Zk taken
along the great circle of the S5 that is fixed by the orbifold.

In the light-cone gauge, the Type IIB superstring on
the pp-wave background (2)–(4) is described by eight
worldsheet scalars xI and eight worldsheet Majorana
fermions (θ1, θ2), all of which are free but massive. The
masses of the scalars and the fermions are equal by world-
sheet supersymmetry (which originates from the light-
cone gauge fixing of the Green–Schwarz action) and equal
to the RR 5-form field strength, µ. Both θ1, θ2 are positive
chirality Majorana–Weyl spinors of SO(9, 1), obeying the
light-cone gauge condition Γ+θi = 0. Decomposing the
worldsheet fields into SO(4)1 × SO(4)2 subgroups,

xI = (�x, �y)→ (�x, z1, z2),
g : �x −→ �x, zm −→ ωzm, (6)

θ ≡ 1√
2

(θ1 + iθ2)→ (χα, ξα̇),

g : χα −→ χα, ξα̇ −→ Ωα̇
β̇ξ

β̇ . (7)

Here, α and α̇ are spinor indices of SO(4)2, ranging over
1, 2. We have suppressed the spinor indices of SO(4)1 un-
der which the χα carry positive chirality, while the ξα̇

carry a negative one. Ω = diag(ω, ω−1), viz. ξ1̇ and ξ2̇

transform oppositely under the Zk orbifold action. It is

convenient to combine ξ1̇, ξ
2̇

into a Dirac spinor ξ, and ξ
1̇

and ξ2̇ into its conjugate ξ and analogously for χ and χ.
As the worldsheet theory is free, it is straightforward to
quantize the Type IIB superstring in each twisted sector,
the only difference among various sectors being the mon-
odromy of the worldsheet fields sensitive to the orbifold-
ing, viz. z1, z2 and ξ. The other worldsheet fields remain
periodic as usual. The monodromy conditions in the qth
twisted sector, q = 0, . . . , k − 1, are given by

zm(σ + 2πα′p+, τ) = ωqzm(σ, τ),
ξ(σ + 2πα′p+, τ) = ωqξ(σ, τ), (8)

and result in fractional moding, n(q) = n + (q/k) (n ∈ Z)
of the corresponding oscillator modes.

Physical states are obtainable by applying the bosonic
and fermionic creation operators to the light-cone vacuum
|0, p+〉q of each qth twisted sector. They ought to satisfy
additional constraints ensuring the level-matching condi-
tion: ∑

n∈Z

nNn = 0,
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∑
n∈Z

n(q)
(
Nn(q) −N−n(q)

)
=
∑
n∈Z

(
n(q)Nn(q) + n(−q)Nn(−q)

)
= 0, (9)

and Zk invariance. The bosonic creation operators consist
of

�a†
n, and α† m

n(q), α† m
n(−q) (n ∈ Z) . (10)

Here, �an are the �x oscillators, whereas αm
n(q) and αm

n(−q) are
zm and zm oscillators, respectively. The fermionic creation
operators consist, in obvious notation, of

χ†
n, χ†

n and ξ†
n(q), ξ

†
n(−q). (11)

Acting the fermionic zero mode oscillators to the light-
cone vacua and projecting onto the Zk invariant states,
one fills out N = 2 gravity and tensor supermultiplets of
the plane-wave background. The action of the bosonic os-
cillators on these gives rise to a whole tower of multiplets,
much as in the AdS5 × S5 case. As an example, we have
four invariant states with a single bosonic oscillator

�a †
0 |0, p+〉q, (12)

and states with two bosonic oscillators are

a† µ
n a† ν

−n|0, p+〉q, α† l
n(q)α

† m
−n(q)|0, p+〉q. (13)

In the Z2 case there are additional invariant states built
from two zm or two zm oscillators. However, they do not
satisfy the level-matching condition, (9).

One straightforwardly obtains the light-cone Hamilto-
nian in the qth twisted sector:

HLC(q) =
∑
n∈Z

Nn

√
µ2 +

n2

(α′p+)2
(14)

+
∑
n∈Z

(
Nn(q) + N−n(q)

)√
µ2 +

n(q)2

(α′p+)2
.

The first sum is over those oscillators which are not sen-
sitive to the orbifold. Positive modes label “left” movers,
negative ones “right” movers, Nn (Nn(q) and N−n(q)) is
the total occupation number of bosons and fermions. The
ground state energy is cancelled between bosons and
fermions. This corresponds to a choice of the fermionic
zero mode vacuum that explicitly breaks the SO(8) sym-
metry, which is respected by the metric but not the field
strength background, to SO(4)1 × SO(4)2 [8].

3 Operator analysis
in N = 2 quiver gauge theory

It is known [13] that Type IIB supergravity on AdS5×(S5/
Zk) is dual to N = 2 [U(N)]k quiver gauge theory, the
worldvolume theory of kN D3-branes sitting at the orb-
ifold singularity. In light of discussions in the previous

section, one anticipates that the Type IIB superstring on
a pp-wave orbifold is dual to a new perturbative expan-
sion of the quiver gauge theory at large N and fixed gauge
coupling g2

YM = 4πgsk. The factor of k in the relation
between the string and the gauge coupling is standard,
and is easily deducible from moving the D3-branes off the
tip of the orbifold into the Higgs branch. See also [14]. In
the new expansion, one focuses primarily on states with
conformal weight ∆ and U(1)R charge J which scale as
∆, J ∼ N1/2, whose difference (∆ − J) remains finite in
the large-N limit. U(1)R is the subgroup of the original
SU(4)R symmetry of N = 4 super Yang–Mills theory,
which on the gravity side corresponds to the S1 fixed un-
der the orbifolding; this U(1)R together with the SU(2)1
subgroup of the remaining SO(4)  SU(2)1×SU(2)2 that
commutes with Zk ⊂ SU(2)2 forms the R symmetry group
of N = 2 supersymmetric gauge theory.

The reason for the above scaling behavior is that (∆−
J) is identified with the light-cone Hamiltonian on the
string theory side, whereas1 J/((kN)1/2) ∼ p+, p+ being
the longitudinal momentum carried by the string. When
(∆−J)� J , the light-cone Hamiltonian (14) implies that
on the gauge theory side there are operators obeying the
following relation between the dimension ∆ and the U(1)R

charge J (we set µ ≡ 1):

(∆− J)n =
√

1 + g2
effn

2

and

(∆− J)n(q) =
√

1 + g2
eff (n(q))2. (15)

In the gauge theory, before orbifolding we have N ×
N matrix valued fields, i.e. the gauge field Aµ, complex
scalars Z = (1/21/2)(X4 + iX5) and φm = (φ1, φ2) ≡
(1/21/2)(X6 + iX7, X8− iX9), and fermions χ and ξ. The
fields χ and ξ are spinors of SO(5, 1), transforming as 4
and 4′, respectively. For defining the Zk orbifolding in the
gauge theory, we promote these fields to kN×kN matrices
Aµ, Z, Φm, X and Ξ and project onto the Zk invariant
components. The projection is ensured by the conditions

SAµS
−1 = Aµ, SZS−1 = Z, SXS−1 = X (16)

and
SΦmS−1 = ωΦm, SΞS−1 = ωΞ, (17)

where S = diag(1, ω−1, ω−2, . . . , ω−k+1), each block being
proportional to the N ×N unit matrix.

The resulting spectrum is that of a four-dimensional
N = 2 quiver gauge theory [15] with [U(N)]k gauge group,
containing hypermultiplets in the bi-fundamental repre-
sentations of U(N)i × U(N)i+1, i ∈ Z mod(k). More pre-
cisely, Aµ, Z and X fill out k N = 2 vector multiplets with
the fermions transforming as doublets under SU(2)R (as

1 Since
∫

S5/Zk
F5 = N , the radius of AdS5 is proportional to

(kN)1/4.
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its Cartan generator is proportional to (J67 + J89)). The
Z field has the block-diagonal form

Z =




Z1

Z2

Z3

·
·
Zk




(18)

with zeros on the off-diagonal and the diagonal blocks be-
ing N ×N matrices of U(N)i’s. The Aµ and X fields take
an analogous form. Likewise, the Φm and Ξ fields fill out
k hypermultiplets, in which the scalars are doublets under
SU(2)R, whereas the fermions are neutral. The Φm fields
take the form

Φm =




0 φm
12

0 φm
23

0 ·
· ·
· ·

φm
k1 · ·




(19)

and analogously for Ξ.
The light-cone vacua of the type IIB superstring in the

plane-wave orbifold ought to be described by p− = 0. In
the quiver gauge theory, the vacuum then corresponds to
(∆− J) = 0 operators acting on the Fock space vacuum.
What are the operators satisfying (∆ − J) = 0? Obvi-
ously, one can build k mutually orthogonal, Zk invariant
single trace operators Tr[SqZJ ]. We propose that these
operators are associated to the vacuum in the qth twisted
sector

1√
kJNJ/2

Tr[SqZJ ]←→ |0, p+〉q (q = 0, . . . , k − 1).

(20)
In what sense is this identification unique? After all, in
the quiver gauge theory, it appears that the operators
Tr[SqZJ ] for any q stand on an equal footing. However,
the orbifold action renders an additional “quantum” Zk

symmetry (see e.g. [16]) that acts on fields in the quiver
gauge theory.2 Specifically, one can take an element g in
this quantum Zk, g = e2πi/k, to act on an arbitrary field
Tij , i, j ∈ Z mod(k), as g : Tij −→ Ti+1,j+1. In particu-
lar, one notes that g : Tr[SqZJ ] −→ ωqTr[SqZJ ]. So one
can indeed distinguish classes of operators on the quiver
gauge theory side by their eigenvalues under the quantum
Zk symmetry.

Next, consider the eight twist invariant operators with
(∆− J) = 1. They are

1
kN (J+1)/2 Tr[SqZJDµZ]←→ a† µ

0 |0, p+〉q, (21)

2 This Zk should not to be confused with the spacetime Zk

used for constructing the orbifold. By construction, under the
orbifold action, all the fields are invariant.

1
kN (J+1)/2 Tr[SqZJXJ=1/2]←→ χ†

0|0, p+〉q, (22)

1
kN (J+1)/2 Tr[SqZJX J=1/2]←→ χ†

0|0, p+〉q, (23)

and hence identifiable with Type IIB supergravity modes
(in each twisted sector) built out of a single zero mode
oscillator acting on the qth vacuum. Here, DµZ = ∂µZ +
[Aµ,Z].

Operators corresponding to higher string states on the
pp-wave orbifold arise as follows. Oscillators of the non-
zero level n corresponding to the fields not sensitive to
the orbifold are identified with insertions of the opera-
tors DµZ, XJ=1/2 and X J=1/2 with a position-dependent
phase factor e(2πil/J)n in the trace Tr[SqZJ ]. For instance,
for (∆− J) = 2,

1√
kJNJ/2+1

J∑
l=1

Tr[SqZ lDµZZJ−lDνZ]e(2πil/J)n

←→ aµ †
n aν †

−n|0, p+〉q. (24)

This is exactly the same as in the unorbifolded case – the
insertion of the position-dependent phase factor ensures
that the level-matching condition is satisfied and that the
light-cone energy of the string states is reproduced cor-
rectly [1].

As for the remaining string states involving oscil-
lators with a fractional moding n(q) in the twisted
sectors, we propose to identify them with insertions of
the operators Φm and ΞJ=1/2 together with the position-
dependent phase factor e(2πil/J)n(q). Similarly, insertions
of Φ

m
and ΞJ=1/2 are accompanied with the phase fac-

tor e(2πil/J)n(−q). Again, the prescription implements the
level-matching condition and, as will be demonstrated in
the next section, seems to yield the correct energy of the
corresponding string states. For instance,

1√
kJNJ/2+1

J∑
l=1

Tr[SqZ lΦrZJ−lΦ
s
]e(2πil/J)n(q)

←→ αr †
n(q)α

s †
−n(q)|0, p+〉q. (25)

Note that, for the Z2 orbifold, the state

J∑
k,l=1

Tr[SZkΦrZ lΦsZJ−k−l]e(2πi/J)(kn(1)+(k+l)m(1))

corresponding to αr †
n(q)α

s †
m(q)|0, p+〉1, though being Z2 in-

variant, vanishes for all m,n due to the cyclicity of the
trace, as it should, cf. the remark below (13).

Finally, operators with insertions such as DµDνZ, Z
or XJ=−1/2 in the trace are present at weak coupling, but
should not be present at strong coupling, as there are no
corresponding states in the string spectrum. As in [1], the
reason for this might be related to the fact that these op-
erators acquire a large anomalous dimension in this limit
[1].
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4 Anomalously suppressed anomalous
dimensions

In this section, in fixed g2
YM, large-N and large-J pertur-

bation theory, we shall be computing the leading-order
anomalous dimensions of (∆− J) = 1 operators in N = 2
quiver gauge theory, and confirm that our proposal for
the twisted sector operators reproduces the correct light-
cone string energy spectrum. Amusingly, in the set-up we
have outlined above, one can proceed the computations
essentially parallel to those of [1].

The bosonic part of the (euclidean) quiver gauge the-
ory action involving the transverse scalars is given by

SYM =
2

g2
YM

∫
d4xTr

[
|DZ|2 +

2∑
m=1

|DΦm|2

− 1
2

(∣∣[Z,Z]∣∣2 +
2∑

m=1

∣∣∣[Φm, Φ
m
]∣∣∣2

+
2∑

m�=n=1

(∣∣∣[Φm, Φ
n
]∣∣∣2 + |[Φm, Φn]|2

)

+ 2
2∑

m=1

(
|[Z, Φm]|2 +

∣∣∣[Z, Φ
m
]∣∣∣2)

)]
. (26)

The trace “Tr” runs over the kN×kN matrices, the N×N
matrix blocks being invariant under the orbifold action.

Explicitly, the quartic interactions involving Z with
Φm (the last two terms in (26)) are

−
k∑

a=1

2∑
m=1

4
g2
YM

∫
d4x

× tr
[
Zaφ

m
a,a+1Za+1φ

m

a+1,a + Zaφ
m

a,a−1Za−1φ
m
a−1,a

]

+
k∑

a=1

2∑
m=1

2
g2
YM

∫
d4x

× tr
[
Zaφ

m
a,a+1φ

m

a+1,aZa + Zaφ
m

a,a−1φ
m
a−1,aZa (27)

+ φm
a,a+1Za+1Za+1φ

m

a+1,a + φ
m

a,a−1Za−1Za−1φ
m
a−1,a

]
,

the trace “tr” now being over N ×N matrices of the ath
U(N) group. The first line contains “momentum-depen-
dent” interactions, while the second and third line show
“momentum-independent” interactions, respectively.

The free field propagators are〈(
Za

)j
i
(x)
(
Zb

)l
k
(0)
〉

= δabδ
l
iδ

j
k

g2
YM

8π2

1
|x|2 , (28)

〈(
φm

a,a+1
)j
i
(x)
(
φ

n

b+1,b

)l
k
(0)
〉

= δabδ
mnδl

iδ
j
k

g2
YM

8π2

1
|x|2 .

If our proposed map between gauge theory operators and
string modes is correct, according to (15), the anomalous
dimension of the operators O(x) in (25) is expected to
receive perturbative corrections:

(∆− J)n(q) = 1 +
1
2
g2
eff(n(q))2 + · · · (29)

We now demonstrate that this is precisely what one finds.
At leading order in perturbation theory, the logarithmi-
cally divergent contribution to the two-point function from
the “momentum dependent” interactions is obtained as

〈O(x)O†(0)〉

=

(
g2
YM

8π2

)∆

|x|2∆

[
1 +

g2
YMN

2π2 cos
2πn(q)

J
ln
(|x|Λ)] , (30)

whereas, for the “momentum-independent‘ interactions,
cos(2πn(q)/J) is replaced by −1. Other ‘momentum-
independent” interactions involving gauge bosons and
scalar loops cancel, owing to the underlying N = 2 su-
persymmetry. Hence, at large J and N , the leading-order
perturbative correction to the two-point correlation func-
tion is, up to an overall normalization factor,

〈O(x)O†(0)〉 ∼ |x|−2∆

[
1− g2

YMN

J2 (n(q))2 ln
(|x|Λ)] . (31)

This implies that

(∆− J)n(q) = 1 +
1
2
g2
YMN

J2 (n(q))2 + · · · , (32)

reproducing precisely the anticipated perturbative correc-
tion (29), and hence the requisite light-cone energy spec-
trum (14) in the qth twisted sector. Resummation of the
leading logarithms, corresponding to multiple insertions
of the above quartic interactions, is straightforward, and
reproduces the full square-root form in (15). Again, this
closely parallels the computation of [1].
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